
CodeArts Build

Best Practices

Issue 01

Date 2023-11-30

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to "Vul. Response Process". For
details about the policy, see the following website:https://www.huawei.com/en/psirt/vul-response-process
For enterprise customers who need to obtain vulnerability information, visit:https://
securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Graphical Build...1
1.1 Using Maven to Create a Docker Image... 1
1.1.1 Background.. 1
1.1.2 Description... 1
1.1.3 Preparations... 2
1.1.4 Releasing Dependencies to the Self-Hosted Repo... 6
1.1.5 Packaging, Creating, and Pushing an Image... 11
1.1.6 Viewing the Build Results... 13
1.1.7 Q&A.. 13
1.2 Using Node.js to Create a Docker Image... 15

2 Code-based Build...22
2.1 Uploading Software Packages with CMake... 22
2.2 Uploading Software Packages with Maven... 27
2.3 Uploading Software Packages with npm..35

CodeArts Build
Best Practices Contents

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. iii

1 Graphical Build

1.1 Using Maven to Create a Docker Image

1.1.1 Background
CodeArts Build provides a large number of build actions and templates, and
implements out-of-the-box build experience through cache, the self-hosted repo,
and Huawei Mirrors. If you are using CodeArts Build for the first time, it may be
difficult to get started. Therefore, CodeArts Build provides best practices for you to
cope with common complex build scenarios.

This section describes how to use CodeArts Build to build Maven projects, how to
use the build package to create a Docker image and push it to SWR, and how to
use Huawei Mirrors, the self-hosted repo, and cache in the build process.

SoftWare Repository for Container (SWR) stores Docker images uploaded by
users. These images can be used in build, deployment, and other scenarios.

1.1.2 Description
This section involves the building of two Maven projects, one base Docker image,
and one Dockerfile.

● WebServer project: project to be built. A build package will be obtained and
used to create a Docker image. The Dockerfile used for creating the image
will be stored in the root directory of this project.

● WebUtil project: a self-developed tool package required by WebServer. It is
introduced in the pom file of the WebServer project and is used to
demonstrate the applicable scenario of the self-hosted repo.

● Base image: You can create a Docker image by adding the WebServer build
package to the base image.

● Dockerfile: used to create images.

The following figure shows the build process.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/eu/productdesc-swr/swr_03_0001.html

This section describes the entire process from preparing the code repository to
creating and pushing the image to SWR. The procedure is as follows:

● Preparations
● Releasing Dependencies to the Self-Hosted Repo
● Packaging, Creating, and Pushing an Image
● Viewing the Build Results

1.1.3 Preparations
If you are using CodeArts Build for the first time, create a project before starting
this example.

Prepare a Repository for the WebServer Project

Step 1 Create the WebServer directory for storing code and enter the directory.

Step 2 Create the pom.xml file in the WebServer directory. The file content is as follows:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.xx.demo</groupId>
 <artifactId>server</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>server</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/eu/qs-projectman/projectman_qs_1000.html

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 </manifest>
 <manifestEntries>
 <Main-Class>
 HelloWorld
 </Main-Class>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
</project>

Step 3 Create the src\main\java directory.

Step 4 Create the HelloWorld.java file in the directory created in Step 3. The file content
is as follows:
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Step 5 On the CodeArts Build homepage, click in the upper right corner and select
Custom Build Environments.

Step 6 On the Custom Build Environments page, click CentOS 7-based x86 Base Image
to obtain the Dockerfile corresponding to the base image.

In this example, CentOS is used as the base image.

Step 7 View the coordinate definition of the build package in the pom.xml file of the
WebServer project in Step 2.

The Maven build package name is <artifact_ID>-<version>.packaging. By default,
the build package is generated in the ./target directory. The final build package
path is ./target/server-1.0.jar.

Step 8 Use the build package path obtained in Step 6 to compile the Dockerfile. The
content is as follows:
FROM centos
MAINTAINER <devcloud@demo.com>
USER root
RUN mkdir /demo
COPY ./target/server-1.0.jar /demo/app.jar

Step 9 On the navigation bar, choose Services > Repo. Create a repository named
WebServer by referring to Creating a Repository, and upload the file created in
Step 2, Step 3, and Step 7 to the repository by referring to Uploading Code to a
Repository. After the code is uploaded, you can go to the repository to view the
code.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0017.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0016.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0016.html

----End

Prepare a Repository for the WebUtil Project

Step 1 Create the WebUtil directory for storing code.

Step 2 Create the pom.xml file in the directory created in Step 1. The file content is as
follows:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.xx.demo</groupId>
 <artifactId>util</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>util</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 4

 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 </manifest>
 <manifestEntries>
 <Main-Class>
 HelloWorld
 </Main-Class>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
</project>

Step 3 Create the src\main\java directory.

Step 4 Create the HelloWorld.java file in the directory created in Step 3. The file content
is as follows:
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Step 5 On the navigation bar, choose Services > Repo. Create a repository named
WebUtil by referring to Creating a Repository, and upload the file created in
Step 2 and Step 4 to the repository by referring to Uploading Code to a
Repository. After the code is uploaded, you can go to the repository to view the
code.

----End

Prepare a Self-hosted Repo Endpoint

Step 1 In the navigation pane, choose Settings > General > Service Endpoints.

Step 2 Click Create Endpoint and select nexus repository.

Step 3 In the displayed dialog box, enter the required parameters.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0017.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0016.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0016.html

● Service Endpoint Name: Use the displayed self-hosted repo endpoint name.
● Repository URL: the address of the self-hosted repo.
● Username: the username in the configuration file downloaded from the self-

hosted repo.
● Password: the password in the configuration file downloaded from the self-

hosted repo.

The following describes how to obtain the parameters.

1. In the navigation pane, choose Artifact > Self-hosted Repos and click next
to the repository path to obtain the address of the self-hosted repo.

2. Click Set Me Up.
3. Select Maven as the Dependency Manager and click Download

Configuration File.

4. Obtain the username and password for the file.

Use the username and password under a specific ID. The ID refers to the last
parameter of the repository address.

Step 4 When creating an image and pushing it to the SWR repository, go to the SWR
console, create an organization, and specify the SWR organization name.

----End

1.1.4 Releasing Dependencies to the Self-Hosted Repo
This section describes how to release required dependencies to a self-hosted repo.
Before using CodeArts Build, read the following precautions.

NO TE

The self-hosted repo and release repo are two different services. Pay attention to the
differences and avoid releasing dependencies to the release repo.
● The release repo is used to archive software packages for deployment or other purposes.
● The self-hosted repo is used to store tool packages for other projects, for example,

WebUtil.jar.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 6

https://console.eu.huaweicloud.com/swr/?locale=en-us
https://console.eu.huaweicloud.com/swr/?locale=en-us
https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0014.html

In this example, the WebServer uses three dependencies:

● WebUtil: a self-developed common component that is released to the self-
hosted repo through CodeArts Build.

● CommonUtil: a partner-provided component that contains JAR packages and
pom files (the pom file of the CommonUtil project cannot be used as the
pom file of the WebServer project). You can manually upload the package in
POM mode.

● MessageSDK: a third-party component that contains only JAR packages. You
need to consider whether the pom file can be obtained in other ways or
whether the file can be uploaded in GAV mode.

Preparations
If you are using CodeArts for the first time, access the self-hosted repo homepage
to initialize the self-hosted repos. For details, see Creating a Self-Hosted Repo.

Releasing WebUtil
For self-developed tool packages, dependencies need to be compiled and released
at a certain frequency. You are advised to use Build with Maven provided by
CodeArts Build to build and release dependencies to the self-hosted repo. This
solution has the following advantages:
● You can release tool packages in one-click during the version iteration.
● Automatic continuous integration can be implemented based on functions

such as scheduled building and code merging triggering in CodeArts Build and
CodeArts Pipeline.

● Maven automatically generates content, which ensures the integrity and
validity of the uploaded dependencies.

The configuration procedure is as follows:

Step 1 Create a build task. Select the repository WebUtil created in preparations as the
code source, select Maven as the build template, and set the task name to
Release WebUtil to the Self-hosted Repo.

The Maven template is preconfigured with the actions Build with Maven and
Upload to Release Repos and default build commands. In most scenarios, you
can directly use the preset actions to build and release the generated software
package to the release repos.

Step 2 Delete the action Upload to Release Repos.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 7

https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/eu/usermanual-codeci/codeci_01_0001.html

NO TE

This section describes how to release the tool package which the project requires to the
self-hosted repo. Therefore, the action Upload to Release Repos is not needed. If you need
to archive the software package to the release repo, retain this step. The build package is
automatically generated in the ./target directory by default.

Step 3 Configure the action Build with Maven.

1. Comment out the default mvn package command and enable the mvn
deploy command that has been commented out.

2. Check the build commands. The template provides default parameter settings.
Only verify that the parameters are correct.
– By default, the command reads the pom file from the root directory. In

this example, the pom file of the WebUtil project is in the root directory
and requires no changes.

– WebUtil project requires JDK 1.8 for compilation and running. Ensure that
the tool version is maven3.5.3-jdk8-open.

– This build aims to release a dependency. The default command is mvn
deploy, which has been enabled.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 8

NO TE

▪ mvn deploy command is used to package the project and release it to the
specified self-hosted repo for other projects to reference. If the project does
not need to be released to the self-hosted repo or the self-hosted repo is
faulty, you can run the mvn install to package the project and cache it. The
project can also be directly referenced by other projects. (The cache is
required during the build. The cache content does not ensure data durability.
If the cache content is lost, the project needs to be rebuilt.)

▪ For details about the default command parameters, see What Do Default
Commands in Build with Maven Indicate?

3. Choose Release to Self-hosted Repos > Configure all POMs, and select the
self-hosted repo to be released to.

Check cache setting:
– CodeArts Build supports caches to accelerate your build. You can

determine whether to use the cache by Cache Setting.
– Network jitter, concurrent builds, or other extreme conditions may result

in abnormal cache. Consequently, build errors may occur and you need to
clear the cache by referring to the Cache Clearing.

Step 4 After the task is executed successfully, go to the Artifact > Self-hosted Repos to
view the uploaded dependency.

----End

Manually Releasing CommonUtil in POM Mode

Some dependencies are released through systemPath or manually released to a
self-built self-hosted repo using the JAR package provided by a third party (It is
the CommonUtil package in this example). These dependencies cannot be
downloaded from public repositories. You need to manually upload these
dependencies to self-hosted repos in POM mode. The procedure is as follows:

Step 1 Choose Artifact > Self-hosted Repos and select a repository type according to the
type of the dependency to be uploaded.

Step 2 Obtain the pom file.
● Method 1: Download the pom file from the repository.

Some dependencies may come from a third-party repository that CodeArts
cannot access. You can download the dependencies from the repository. In
this scenario, the private Maven repository provides both JAR packages and
pom files. You can download the pom file from the repository.

● Method 2: Obtain the pom file from the JAR package.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 9

If only the JAR package, not the repository, source code, or pom file, can be
found for some dependencies, perform the following steps to obtain the pom
file (the WebUtil package is used as an example):

a. Decompress the util-1.0.jar package. If the package cannot be
decompressed, change the file name extension to a supported format.

b. Enter the directory generated after the decompression, open the META-
INF/maven/{groupid}/{artifactid} directory (META-INF/maven/
com.xx.demo/util in this example), open the pom file, and verify that
the file is correct.

c. If the pom file cannot be found, check whether the file can be uploaded
in GAV mode.

Step 3 Click Upload in the upper right corner, select POM, and select the pom and jar
files to upload.

NO TE

Pay attention to the following when manually uploading WebUtil:

The WebServer project depends on the WebUtil project. When uploading the WebUtil
project, you must use the pom file of the WebUtil project. If the pom file of the WebServer
project and the JAR package of the WebUtil project are uploaded by mistake, the uploaded
dependency coordinates are inconsistent with the expected ones. As a result, the
dependency download fails.

----End

Uploading MessageSDK in GAV Mode
You are advised to manually upload the dependency in POM mode. If the pom file
cannot be found, upload the dependency in GAV mode. However, this mode has
potential risks. Evaluate the risks before using this mode.

The following describes the application scenarios and risks of GAV mode:

● When the GAV mode is used, the self-hosted repo automatically generates a
pom file based on the entered coordinate information. The file content
contains only the coordinate definition of the dependency.

● Take WebUtil as an example. If the WebUtil project uses the tool package
lib.jar, after WebUtil is uploaded in GAV mode, the lib.jar package cannot be
downloaded for the build of WebServer project. As a result, the build package
is not as expected.

● If the WebUtil project does not require any dependency (the node of the pom
file is empty), you can upload the file in this mode.

If you have carefully read the preceding risk description and ensure that the to-be-
uploaded dependency does not have the preceding risks or you accept the risks,
perform the following steps:

Step 1 Choose Artifact > Self-hosted Repos and select a repository type according to the
type of the dependency to be uploaded.

Step 2 Click Upload in the upper right corner, select GAV, edit the coordinate information
as prompted, select the JAR package, and upload it.

----End

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 10

1.1.5 Packaging, Creating, and Pushing an Image
Step 1 Create a build task. Select the repository WebServer created in preparations as

the code source, select Maven as the build template, and set the task name to
Create a Docker Image Using WebServer.

The Maven template is preconfigured with the actions Build with Maven and
Upload to Release Repos and default build commands. In most scenarios, you
can directly use the preset actions to build and release the generated software
package to the release repos.

Step 2 Delete the action Upload to Release Repos.

NO TE

This section describes how to pack, create, and push the image on which the project
requires to SWR. Therefore, the action Upload to Release Repos is not needed. If you need
to archive the software package to the release repo, retain this step. The build package is
automatically generated in the ./target directory by default.

Step 3 Configure the action Build with Maven and ensure that the build commands and
cache configuration are correct.

1. Check the build commands: The template provides default parameter settings.
Only verify that the parameters are correct.
– By default, the command reads the pom file from the root directory. In

this example, the pom file of the WebServer project is in the root
directory and requires no changes.

– WebServer requires JDK 1.8 for compilation and running. Ensure that the
tool version is maven3.5.3-jdk8-open.

– The target of this build is packaging. The default command is mvn
package. For details about the default parameters, see the description
of the default commands for Build with Maven.

2. Check the cache setting.
– CodeArts Build supports caches to accelerate your build. You can

determine whether to use the cache by Cache Setting.
– Network jitter, concurrent builds, or other extreme conditions may result

in abnormal cache. Consequently, build errors may occur and you need to
clear the cache by referring to the Cache Clearing.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 11

https://support.huaweicloud.com/eu/usermanual-codeci/codeci_01_0001.html

NO TE

Huawei Mirrors is automatically configured as the open-source dependency
source. Dependencies can be automatically downloaded into CodeArts Build
without any additional configuration. The following image sources have been
proxied or synchronized on Huawei Mirrors:

▪ Maven2: https://repo1.maven.org/maven2/

▪ Jboss: https://repository.jboss.org/nexus/content/repositories/releases/

▪ Jcenter: https://mvnrepository.com/repos/jcenter

▪ Grails-core: https://repo.grails.org/grails/core/

▪ Grails-plugins: https://repo.grails.org/grails/plugins/

▪ Spring-release: https://repo.spring.io/libs-release/

▪ Spring-plugins: https://repo.spring.io/plugins-release/

Step 4 Configure the public repository that is not provided by CodeArts.

In this example, the WebServer uses the lib.jar file from the third-party repository
https://test.repo.com/. You need to configure the lib.jar file in Build with Maven.

The configuration is shown in the following figure.

NO TE

The repository of this type must meet the following requirements:
● The repository address can be directly accessed from the public network (Chinese

Mainland).
● No identity authentication information is required for dependency download.

Step 5 Configure a self-hosted repo.

The util-1.0.jar package of the WebUtil project has been released to the self-
hosted repo. This section uses this dependency as an example to describe how to
use the self-hosted repo in the Creating a Docker Image Using WebServer task.

1. Edit the pom.xml file in the local WebServer code directory and add the
util-1.0.jar dependency to the <dependencies></dependencies> file.
<dependency>
 <groupId>com.xx.demo</groupId>
 <artifactId>util</artifactId>
 <version>1.0</version>
</dependency>

2. Save the pom.xml file and upload it to the WebServer code repository again.
3. In the action Build with Maven, select the self-hosted repo endpoint created

in the preparations.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 12

Step 6 Add the action Build Image and Push to SWR after the action Build with Maven
and enter the required image information.
● Image Repository: Retain the default value.
● Organization: Enter the name of the organization created in preparations.
● Image Name: Set this parameter to webserver.
● Image Tag: Set this parameter to v1.1.
● Work Directory: Retain the default value.
● Dockerfile Path: In preparations, Dockerfile has been stored in the root

directory of the WebServer project. The current build directory is the root
directory of the project. The default value is ./Dockerfile.

Step 7 Save and execute the task. After the task is successfully executed, you can view
the build result.

----End

1.1.6 Viewing the Build Results
Step 1 Go to the SWR console and select the target region.

Step 2 In the navigation pane on the left, choose My Images and select the organization
entered in the Build Image and Push to SWR to view the uploaded image.

----End

1.1.7 Q&A

What Is Cache? How Do I Clear Abnormal Cache?
CodeArts Build allows you to cache the dependencies in your private storage
space. Once cached, the dependencies will not have to be pulled for future builds.
This greatly accelerates builds.

● Configuring cache setting
Cache is enabled by default when a build task is created. You can change this
setting in Build with Maven > Cache.

● Clearing the cache
Network jitter, concurrent builds, or other extreme conditions may result in
abnormal cache. Consequently, build errors may occur. The following
describes how to clear the abnormal cache.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 13

https://console.eu.huaweicloud.com/swr/?locale=en-us

Before clearing cache, make sure you are well aware of the following
precautions:
– The cache directory is shared by multiple users of the same tenant.

Frequent cache clearing may cause exceptions (file loss, often the case)
in other users' builds. Therefore, clear cache only when the cache is
abnormal. After the cache returns to normal, edit the task to delete the
clearing command.

– Use a detailed file path when clearing the cache. For example, to clear
demo 1.0.0, run rm -rf /path/com/xx/demo/1.0.0. If an upper-level
directory is entered in the cache clearing command, the next build will be
slow or the dependency will be abnormal due to network problems.

– For security purposes, the cache clearing command can be executed only
in the Build with Maven action. If this command is executed in other
actions, the clearing operation may not succeed or an error will be
displayed indicating that the directory does not exist.

If you have read the risk description carefully and understand and accept the
risks, perform the following steps to clear the cache:

a. Prepare the clearing command.

▪ The format of the cache clearing command is rm -rf /repository/
local/maven/{group_ID}/{artifact_ID}/{version}.

▪ {Group_ID}, {Artifact_ID}, and {Version} are the groupId, artifactId,
and version of the dependency.
For example, if the dependency is as follows:
<dependency>
 <groupId>com.xx.devcloud</groupId>
 <artifactId>demo</artifactId>
 <version>1.0.9-SNAPSHOT</version>
</dependency>

The command for clearing the dependency is rm -rf /repository/
local/maven/com/xx/devcloud/demo/1.0.9-SNAPSHOT.

b. Edit the build task and configure the action Build with Maven.
c. Find the mvn xxxx command, add a line before the command, enter the

prepared clearing command, and save the task.
d. Run the build task again.
e. Edit the task again and remove the cache clearing command.

What Do Default Commands in Build with Maven Indicate?

The built-in default build commands of the build service are as follows:
Function: packaging
Parameter description:
-Dmaven.test.skip=true: Skip unit test.
-U: Check for dependency update for each build so that the snapshot version dependency in the
cache is always updated. However, this will lower performance.
-e -X: Print the debugging information. Use this parameter to locate difficult build problems.
-B: Run in batch mode to avoid the ArrayIndexOutOfBoundsException exception during log
printing.
Scenario: Used for packaging projects when unit tests are not required.
mvn package -Dmaven.test.skip=true -U -e -X -B

The meaning of each command/parameter is as follows:

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 14

● mvn package: Use Maven to perform packaging. After this command is
executed, a software package is generated in the target directory of the
project. You can change the directory as required.

● -Dmaven.test.skip=true: Skip the unit test. You are advised to retain this
parameter.

● -U: Check for dependency update for each build so that the snapshot version
dependency in the cache is always updated. However, this will lower
performance. You are advised to retain this parameter.

● -e -X: Print the debugging information. Use this parameter to locate difficult
build problems.

● -B: Run in batch mode to avoid the ArrayIndexOutOfBoundsException
exception during log printing.

1.2 Using Node.js to Create a Docker Image

Background
This section helps you use a Node.js build task to create a Docker image on
CodeArts Build.

Preparations
You are familiar with the basic concepts, environment installation, and basic
operations of Docker. For details on how to install Docker on each OS platform,
see Docker Documentation.

If you are using CodeArts Build for the first time, create a project before starting
this example.

Step 1 Create the nodesource directory for storing code and enter the directory.

Step 2 Create the package.json file in the nodesource directory. The content is as
follows:
{
"name": "docker_web_app",
"version": "1.0.0",
"description": "Node.js on Docker",
"author": "First Last <first.last@example.com>",
"main": "server.js",
"scripts": {
"start": "node server.js"
},
"dependencies": {
"express": "^4.16.1"
}
}

Step 3 Create the server.js file. The file content is as follows:
'use strict';
const express =require('express');
// Constants
const PORT=8080;
const HOST='0.0.0.0';
// App
const app =express();
app.get('/',(req, res)=>{
res.send('Hello world\n');

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 15

https://docs.docker.com/
https://support.huaweicloud.com/eu/qs-projectman/projectman_qs_1000.html

});
app.listen(PORT,HOST);
console.log(`Running on http://${HOST}:${PORT}`);

Step 4 Verify the code. After the code is prepared, compile the code locally and run the
project to check whether the result is normal.

1. Open a command line tool, run the cd command to enter the directory where
nodesource is located, run the npm install command to complete
dependency installation, and then run the node server.js command to run the
project.

2. Open the browser and enter<local_IP_address>:8080 in the address box. If the
following information is displayed, the service is running properly.

Step 5 Create a Dockerfile in the nodesource directory. The content is as follows:
#use the latest LTS (long term support) version 12 of node available from the Docker Hub
FROM node:12
Create app directory
WORKDIR /usr/src/app
Install app dependencies
A wildcard is used to ensure both package.json AND package-lock.json are copied
where available (npm@6+)
COPY package*.json ./
RUN npm install
If you are building your code for production
RUN npm ci --only=production
Bundle app source
COPY . .
EXPOSE 8080
CMD ["node","server.js"]

Step 6 Create a .dockerignore file with the following content:
node_modules
npm-debug.log

Step 7 Upload the code to CodeArts Repo.

On the navigation bar, choose Services > Repo. Create a repository named
nodesource by referring to Creating a Repository, and upload code to the
repository by referring to Uploading Code to a Repository. After the code is
uploaded, you can go to the repository to view the code.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0017.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0016.html

----End

Packaging, Creating, and Pushing an Image

Step 1 Create a build task. Select the repository nodesource created in Preparations as
the code source, select npm as the build template, and set the task name to
nodesource-build.

Step 2 Configure build actions.

1. Configure the action Build with npm. For Commands, comment out npm
run build and enter zip -r ./nodeserver.zip ./ to pack the code into
nodeserver.zip.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/eu/usermanual-codeci/codeci_01_0001.html

2. Configure the action Upload to Release Repos, with the parameters specified
as shown in the figure below.
– Package Location: directory of the software package to be uploaded.
– Version: version of the software package.
– Package Name: name of the software package.

3. Add Build Image and Push to SWR action next to the action Upload to
Release Repos. Specify the parameters as shown in the figure below.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 18

Step 3 After configuring all build actions, click Create and Run to run build task.

After the task is successfully run, you can view the new image address in the log.

----End

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 19

Viewing and Verifying the Build Result

Step 1 In the navigation pane, choose Artifact > Release Repos to view the uploaded
software package whose name is the same as the build task name.

Step 2 Obtain an image pull command and set the image as a public image.

1. On the SWR console, click My Images in the navigation pane on the left, and
click the image nodestudy.

2. On the image details page, click in the Image Pull Command column to
obtain the image pull command (docker pull + image address).

3. Select image tag v1.1.0 and click Edit in the upper right corner. In the
displayed dialog box, select Public and click OK.

Step 3 Verify the image.

1. Find a host where Docker is installed and enter the image pull command
obtained in the previous step in the CLI.

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 20

https://console.eu.huaweicloud.com/swr/?locale=en-us

2. Run docker run -p 28080:8080 -d <image_address> to run the image.
In the preceding information, -p 28080:8080 indicates that port 8080 in the
image is mapped to port 28080 on the local host.

3. Enter http://ip:port in the address box of the browser. If the following page is
displayed, the image is created successfully.
ip indicates the IP address of the host.

----End

CodeArts Build
Best Practices 1 Graphical Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 21

2 Code-based Build

2.1 Uploading Software Packages with CMake

Background
CodeArts Build allows you to configure build scripts using YAML files. You can use
YAML syntax to compile the build environment, parameters, commands, and steps
into a build.yml file, which can be stored in a code repository with the built code.
The system uses the build.yml file as the build script to execute the build task,
making the build process traceable, recoverable, secure, and reliable. The build
with CMake is used as an example in this section.

Prerequisites
A project is available. If no project is available, create one.

Creating a Code Repository

Step 1 Log in to CodeArts using the Huawei Cloud account.

Step 2 Click the name of the project to create a repository for it.

Step 3 In the navigation pane, choose Code > Repo, as shown in Figure 2-1.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 22

https://support.huaweicloud.com/eu/qs-projectman/projectman_qs_1000.html

Figure 2-1 CodeArts Repo

Step 4 Click New Repository.

Step 5 Set parameters based on Table 2-1 and click OK.

Table 2-1 Creating a code repository

Parameter Description

Repository
Name

Customize the name for the code repository, for example,
CppDemo_build.
● The name starts with a digit, letter, or underscore (_).
● The value can contain periods (.) and hyphens (-).
● The value cannot end with .git, .atom, or a period (.).

Description Describe the code repository.

.gitignore
Programmi
ng
Language

Select .gitignore based on the programming language, for
example, Java.

Permission
s

Select all.
● Make all project developers automatic repository members:

A project manager is automatically set as the repository
administrator, and a developer is set as a common repository
member. When the two roles are added to the project, they will
be automatically synchronized to existing repositories.

● Generate README: You can edit the README file to record
information such as the project architecture and compilation
purpose, which is similar to a comment on the entire repository.

● Automatically create Check task (free of charge): After the
repository is created, you can view the code check task of the
repository in the check task list.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 23

Parameter Description

Visibility Set this parameter to Private.
● Private: Only repository members can access and commit code.
● Public: The repository is open and read-only to all guests, but is

not displayed in their repository list or search results. You can
select an open-source license as the remarks.

----End

Creating a build.yml File

Step 1 In the navigation pane, choose Code > Repo.

Step 2 Click the name of the code repository you created (see Creating a Code
Repository).

Step 3 Choose Create > Create Directory, as shown in Figure 2-2.

Figure 2-2 Creating a directory

Step 4 Set parameters based on Table 2-2 and click OK.

Table 2-2 Creating a directory

Paramete
r

Description

Directory
Name

You can customize the value, for example, .cloudbuild.

Commit
Message

Enter remarks of the directory. The message is used to record the
description of the files in the folder.

Step 5 Click the name of the directory created in Step 4.

Step 6 Choose Create > Create File, as shown in Figure 2-3.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 24

Figure 2-3 Creating a file

Step 7 Name the file build.yml and copy the following code to the file:
This YAML is the default template and can be modified based on this

version: 2.0
steps:
 PRE_BUILD:
 - checkout:
 name: "checkout"
 inputs:
 scm: "codehub"
 url: "git@codehub.devcloud.cn-north-4.huaweicloud.com:cszl00001/cppDemo.git"
 branch: "master"
 lfs: false
 submodule: false
 BUILD:
 - cmake:
 name: "CMake Build"
 inputs:
 command: |
 # Create the build directory and switch to the build directory.
 mkdir build && cd build
 # Generate makefiles for the Unix platform and perform the build.
 cmake -G 'Unix Makefiles' ../ && make -j
 - upload_artifact:
 inputs:
 path: "build/*"
 version: 2.1
 name: packageName

Step 8 Click OK.

----End

Creating a CMakeLists.txt File

Step 1 Create a file named CMakeLists.txt in the root directory by referring to Step 6
and Step 7. The code in the file is as follows:
cmake_minimum_required (VERSION 2.5)

project (HolleWorld)
AUX_SOURCE_DIRECTORY(. DIR_SRCS)

add_executable(bin ${DIR_SRCS})

Step 2 Click OK.

----End

Creating a helloworld.cpp File

Step 1 Create a file named helloworld.cpp in the root directory by referring to Step 6
and Step 7. The code in the file is as follows:

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 25

#include <iostream>
int main()
{
 std::cout << "Hello World !" << std::endl;
 return 0;
}

Step 2 Click OK.

----End

Creating a Build Task

Step 1 In the navigation pane, choose CICD > Build, as shown in Figure 2-4.

Figure 2-4 Accessing the CodeArts Build homepage

Step 2 Click Create Task.

Step 3 Set parameters based on Table 2-3.

Table 2-3 Basic information

Parameter Description

Task Name Enter a custom task name, for example, CppDemo_build.

Code
Source

Select Repo.

Source
Code
Repository

Select the code repository you created (see Creating a Code
Repository).

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 26

Parameter Description

Branch Select the branch created when you create the repository in
Creating a Code Repository. If no branch is available, select the
default master.

Description Describe the build task.

Step 4 Click Next.

Step 5 Select Blank Template and click Next.

Step 6 Click the Code tab to view the imported build script, as shown in Figure 2-5.

Figure 2-5 Code tab

Step 7 Click Create and Run in the upper right corner.

----End

Viewing and Verifying the Build Result

Step 1 In the navigation pane, choose Artifact > Release Repos.

Step 2 Go to the release repos to view the released software package. The software
package name is the same as the task name when you create a build task.

----End

2.2 Uploading Software Packages with Maven

When to Use
CodeArts Build allows you to configure build scripts using YAML files. You can use
YAML syntax to compile the build environment, parameters, commands, and steps
into a build.yml file, which can be stored in a code repository with the built code.
The system uses the build.yml file as the build script to execute the build task,
making the build process traceable, recoverable, secure, and reliable. The build
with Maven is used as an example in this section.

Prerequisites
A project is available. If no project is available, create one.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 27

https://support.huaweicloud.com/eu/qs-projectman/projectman_qs_1000.html

Creating a Code Repository

Step 1 Log in to CodeArts using the Huawei Cloud account.

Step 2 Click the name of the project to create a repository for it.

Step 3 In the navigation pane, choose Code > Repo, as shown in Figure 2-6.

Figure 2-6 CodeArts Repo

Step 4 Click New Repository.

Step 5 Set parameters based on Table 2-4 and click OK.

Table 2-4 Creating a code repository

Parameter Description

Repository
Name

Customize the name for the code repository, for example,
maven_yml_build.
● The name starts with a digit, letter, or underscore (_).
● The value can contain periods (.) and hyphens (-).
● The value cannot end with .git, .atom, or a period (.).

Description Describe the code repository.

.gitignore
Programmi
ng
Language

Select .gitignore based on the programming language, for
example, Java.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 28

Parameter Description

Permission
s

Select all.
● Make all project developers automatic repository members:

A project manager is automatically set as the repository
administrator, and a developer is set as a common repository
member. When the two roles are added to the project, they will
be automatically synchronized to existing repositories.

● Generate README: You can edit the README file to record
information such as the project architecture and compilation
purpose, which is similar to a comment on the entire repository.

● Automatically create Check task (free of charge): After the
repository is created, you can view the code check task of the
repository in the check task list.

Visibility Set this parameter to Private.
● Private: Only repository members can access and commit code.
● Public: The repository is open and read-only to all guests, but is

not displayed in their repository list or search results. You can
select an open-source license as the remarks.

----End

Creating a build.yml File

Step 1 In the navigation pane, choose Code > Repo.

Step 2 Click the name of the code repository you created (see Creating a Code
Repository).

Step 3 Choose Create > Create Directory, as shown in Figure 2-7.

Figure 2-7 Creating a directory

Step 4 Set parameters based on Table 2-5 and click OK.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 29

Table 2-5 Creating a directory

Paramete
r

Description

Directory
Name

You can customize the value, for example, .cloudbuild.

Commit
Message

Enter remarks of the directory. The message is used to record the
description of the files in the folder.

Step 5 Click the name of the directory created in Step 4.

Step 6 Choose Create > Create File, as shown in Figure 2-8.

Figure 2-8 Creating a file

Step 7 Name the file build.yml and copy the following code to the file:
This YAML is the default template and can be modified based on this

version: 2.0
steps:
 BUILD:
 - maven:
 image: cloudbuild@maven3.5.3-jdk8-open # You can customize the image path.
 inputs:
 settings:
 public_repos:
 - https://mirrors.huawei.com/maven
 cache: true # Indicates whether to enable the cache.
 command: mvn package -Dmaven.test.failure.ignore=true -U -e -X -B
 - upload_artifact:
 inputs:
 path: "**/target/*.?ar"
 - build_image:
 inputs:
 organization: codeci_gray # Organization name
 image_name: maven_demo # Image name
 image_tag: 1.0 # Image tag
 dockerfile_path: ./Dockerfile

Step 8 Click OK.

----End

Creating a Java File

Step 1 Create a directory named src/main/java by referring to Step 4.

Step 2 Create the HelloWorld.java file in the src/main/java directory by referring to
Step 6 and Step 7. The code in the file is as follows:

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 30

/**
 * Hello world
 *
 */

public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello World!");
 }

}

Step 3 Click OK.

----End

Creating a Dockerfile

Step 1 Create a file named Dockerfile in the root directory by referring to Step 6 and
Step 7. The code in the file is as follows:
FROM swr.cn-north-5.myhuaweicloud.com/codeci/special_base_image:centos7-base-1.0.2-in
MAINTAINER <devcloud@demo.com>
USER root
RUN mkdir /demo
COPY ./target/server-1.0.jar /demo/app.jar

server-1.0.jar combines the values of artifactId, packaging, and version in the
pom.xml file.

Step 2 Click OK.

----End

Creating a pom.xml File

Step 1 Create a file named pom.xml in the root directory by referring to Step 6 and Step
7. The code in the file is as follows:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.huawei.demo</groupId>
 <artifactId>server</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>server</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 31

 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 </manifest>
 <manifestEntries>
 <Main-Class>
 HelloWorld
 </Main-Class>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
</project>

Step 2 Click OK.

----End

Creating a Build Task

Step 1 In the navigation pane, choose CICD > Build, as shown in Figure 2-9.

Figure 2-9 CodeArts Build homepage

Step 2 Click Create Task.

Step 3 Set the parameters based on the Table 2-6, as shown in Figure 2-10.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 32

Table 2-6 Basic information

Parameter Description

Task Name Enter a custom task name, for example, maven_yml_build.

Code
Source

Select Repo.

Source
Code
Repository

Select the code repository you created (see Creating a Code
Repository).

Branch Select the branch created when you create the repository in
Creating a Code Repository. If no branch is available, select the
default master.

Description Describe the build task.

Figure 2-10 Creating a Build Task

Step 4 Click Next.

Step 5 Select Blank Template and click Next.

Step 6 Click the Code tab to view the imported build script, as shown in Figure 2-11.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 33

Figure 2-11 Code tab

Step 7 Click Create and Run in the upper right corner.

----End

Viewing and Verifying the Build Result
● Verifying the uploaded the software package

a. In the navigation pane, choose Artifact > Release Repos.
b. Go to the release repos to view the released software package. The name

of the software package is the same as the task name you use when
Creating a Build Task, as shown in Figure 2-12.

Figure 2-12 Viewing the software package

● Viewing the pushed image

a. Go to the SWR console.
b. In the navigation pane, choose My Images. In the organization filter box,

search for the organization name you enter in the code when you create
a build.yml file, for example, codeci_gray.

c. In the filtering results, click the image name you enter in the code when
you create a build.yml file, for example, maven_demo, as shown in
Figure 2-13.

Figure 2-13 Filtering images

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 34

https://console.eu.huaweicloud.com/swr/?locale=en-us

2.3 Uploading Software Packages with npm

When to Use
CodeArts Build allows you to configure build scripts using YAML files. You can use
YAML syntax to compile the build environment, parameters, commands, and steps
into a build.yml file, which can be stored in a code repository with the built code.
The system uses the build.yml file as the build script to execute the build task,
making the build process traceable, recoverable, secure, and reliable. The build
with npm is used as an example in this section.

Prerequisites
A project is available. If no project is available, create one.

Creating a Code Repository

Step 1 Log in to CodeArts using the Huawei Cloud account.

Step 2 Click the name of the project to create a repository for it.

Step 3 In the navigation pane, choose Code > Repo, as shown in Figure 2-14.

Figure 2-14 CodeArts Repo

Step 4 Click New Repository.

Step 5 Set parameters based on Table 2-7 and click OK.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 35

https://support.huaweicloud.com/eu/qs-projectman/projectman_qs_1000.html

Table 2-7 Creating a code repository

Parameter Description

Repository
Name

Customize the name for the code repository, for example,
npm_yml_build.
● The name starts with a digit, letter, or underscore (_).
● The value can contain periods (.) and hyphens (-).
● The value cannot end with .git, .atom, or a period (.).

Description Describe the code repository.

.gitignore
Programmi
ng
Language

Select .gitignore based on the programming language, for
example, Java.

Permission
s

Select all.
● Make all project developers automatic repository members:

A project manager is automatically set as the repository
administrator, and a developer is set as a common repository
member. When the two roles are added to the project, they will
be automatically synchronized to existing repositories.

● Generate README: You can edit the README file to record
information such as the project architecture and compilation
purpose, which is similar to a comment on the entire repository.

● Automatically create Check task (free of charge): After the
repository is created, you can view the code check task of the
repository in the check task list.

Visibility Set this parameter to Private.
● Private: Only repository members can access and commit code.
● Public: The repository is open and read-only to all guests, but is

not displayed in their repository list or search results. You can
select an open-source license as the remarks.

----End

Creating a build.yml File

Step 1 In the navigation pane, choose Code > Repo.

Step 2 Click the name of the code repository you created (see Creating a Code
Repository).

Step 3 Choose Create > Create Directory, as shown in Figure 2-15.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 36

Figure 2-15 Creating a directory

Step 4 Set parameters based on Table 2-8 and click OK.

Table 2-8 Creating a directory

Paramete
r

Description

Directory
Name

You can customize the value, for example, .cloudbuild.

Commit
Message

Enter remarks of the directory. The message is used to record the
description of the files in the folder.

Step 5 Click the name of the directory created in Step 4.

Step 6 Choose Create > Create File, as shown in Figure 2-16.

Figure 2-16 Creating a file

Step 7 Name the file build.yml and copy the following code to the file:
This YAML is the default template and can be modified based on this

version: '2.0'
steps:
 BUILD:
 - npm:
 inputs:
 #check:
 #project_dir: .
 command: |
 export PATH=$PATH:~/.npm-global/bin
 #Set the cache directory.
 npm config set cache /npmcache
 npm config set registry http://mirrors.tools.huawei.com/npm/
 npm config set disturl http://mirrors.tools.huawei.com/nodejs
 npm config set sass_binary_site http://mirrors.tools.huawei.com/node-sass/
 npm config set phantomjs_cdnurl http://mirrors.tools.huawei.com/phantomjs
 npm config set chromedriver_cdnurl http://mirrors.tools.huawei.com/chromedriver
 npm config set operadriver_cdnurl http://mirrors.tools.huawei.com/operadriver

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 37

 npm config set electron_mirror http://mirrors.tools.huawei.com/electron/
 npm config set python_mirror http://mirrors.tools.huawei.com/python
 npm config set prefix '~/.npm-global'
 npm install --verbose
 zip -r ./nodeserver.zip ./
 - upload_artifact:
 inputs:
 path: "./nodeserver.zip"

Step 8 Click OK.

----End

Creating a package.json File

Step 1 Create the package.json file in the root directory by referring to Step 6 and Step
7. The code in the file is as follows:
{
"name": "docker_web_app",
"version": "1.0.0",
"description": "Node.js on Docker",
"author": "First Last <first.last@example.com>",
"main": "server.js",
"scripts": {
"start": "node server.js"
},
"dependencies": {
"express": "^4.16.1"
}
}

Step 2 Click OK.

----End

Creating a server.js File

Step 1 Create a file named server.js in the root directory by referring to Step 6 and Step
7. The code in the file is as follows:
'use strict';
const express =require('express');
// Constants
const PORT=8080;
const HOST='127.0.0.1';
// App
const app =express();
app.get('/',(req, res)=>{
res.send('Hello world\n');
});
app.listen(PORT,HOST);
console.log(`Running on http://${HOST}:${PORT}`);

Step 2 Click OK.

----End

Creating a Build Task

Step 1 In the navigation pane, choose CICD > Build, as shown in Figure 2-17.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 38

Figure 2-17 Accessing the CodeArts Build homepage

Step 2 Click Create Task.

Step 3 Set parameters based on Table 2-9.

Table 2-9 Basic information

Parameter Description

Task Name Enter a custom task name, for example, npm_yml_build.

Code
Source

Select Repo.

Source
Code
Repository

Select the code repository you created (see Creating a Code
Repository).

Branch Select the branch created when you create the repository in
Creating a Code Repository. If no branch is available, select the
default master.

Description Describe the build task.

Step 4 Click Next.

Step 5 Select Blank Template and click Next.

Step 6 Click the Code tab to view the imported build script, as shown in Figure 2-18.

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 39

Figure 2-18 Code tab

Step 7 Click Create and Run in the upper right corner.

----End

Viewing and Verifying the Build Result

Step 1 In the navigation pane, choose Artifact > Release Repos.

Step 2 Go to the release repos to view the released software package. The name of the
software package is the same as the task name you use when Creating a Build
Task, as shown in Figure 2-19.

Figure 2-19 Viewing the software package

----End

CodeArts Build
Best Practices 2 Code-based Build

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 40

	Contents
	1 Graphical Build
	1.1 Using Maven to Create a Docker Image
	1.1.1 Background
	1.1.2 Description
	1.1.3 Preparations
	1.1.4 Releasing Dependencies to the Self-Hosted Repo
	1.1.5 Packaging, Creating, and Pushing an Image
	1.1.6 Viewing the Build Results
	1.1.7 Q&A

	1.2 Using Node.js to Create a Docker Image

	2 Code-based Build
	2.1 Uploading Software Packages with CMake
	2.2 Uploading Software Packages with Maven
	2.3 Uploading Software Packages with npm

